بررسی تاثیر پارامترهای اجرایی ماشین tbm بر نرخ نفوذ آن با استفاده از روش شبکه های عصبی مصنوعی- مطالعه ی موردی تونل بلند زاگرس

Authors

سید مصلح افتخاری

علیرضا باغبانان

راحب باقرپور

abstract

نرخ نفوذ یکی از پارامترهای مهم در تعیین مدت زمان حفاری در عملیات تونلسازی است. از آنجا که عملیات حفاری اندرکنش میان زمین و ماشین است؛ بنابراین دو دسته ی کلی پارامتر موثر بر نرخ نفوذ وجود دارد. از طرفی در شرایط یکسان زمین، به دلیل پارامترهای اجرایی متفاوت ماشین، مقدار نرخ نفوذ متفاوت است. بنابراین در این مقاله به بررسی اثر پارامترهای ماشین بر نرخ نفوذ با استفاده از روش شبکه های عصبی مصنوعی پرداخته شده است. پس از انتخاب پارامترهای موثر بر نرخ نفوذ و ایجاد شبکه ی عصبی بهینه، تحلیل حساسیت بر روی پارامتر نیروی محوری پیشران و گشتاور انجام شده است. نتایج تحلیل ها نشان می دهد که نیروی محوری پیشران و گشتاور در یک محدوده ی بهینه، سبب افزایش نرخ نفوذ می شود و به منظور دستیابی به نرخ نفوذ حداکثر می توان از زوج نیروی محوری پیشران و گشتاور بهینه استفاده نمود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

بررسی تاثیر پارامترهای اجرایی ماشین TBM بر نرخ نفوذ آن با استفاده از روش شبکه‌های عصبی مصنوعی- مطالعه‌ی موردی تونل بلند زاگرس

نرخ نفوذ یکی از پارامترهای مهم در تعیین مدت زمان حفاری در عملیات تونلسازی است. از آنجا که عملیات حفاری اندرکنش میان زمین و ماشین است؛ بنابراین دو دسته‌ی کلی پارامتر موثر بر نرخ نفوذ وجود دارد. از طرفی در شرایط یکسان زمین، به دلیل پارامترهای اجرایی متفاوت ماشین، مقدار نرخ نفوذ متفاوت است. بنابراین در این مقاله به بررسی اثر پارامترهای ماشین بر نرخ نفوذ با استفاده از روش شبکه‌های عصبی مصنوعی پرداخ...

full text

پیش بینی نرخ نفوذ tbm با استفاده از روش شبکه عصبی مصنوعی(مطالعه موردی مترو تبریز)

امروزه ماشین‎های تونل‎بری tbm‎ (tunnel boring machine) بطور وسیعی در حفر تونل‎ها بخصوص تونل‎های شهری استفاده می‎شوند. این ماشین‎ها بر اساس روش نگهداری سینه کار و دیواره های تونل، دارای انواع مختلفی می باشند. یکی از انواع این ماشین ها، سپرهای تعادلی فشار زمین epb (earth pressure balance) می باشد که جهت حفاری خط 1 متروی تبریز مورد استفاده قرار گرفته است. عوامل مختلفی نظیر شرایط زمین‎شناسی، خصوصیا...

full text

پیش‌بینی نرخ نفوذ TBM با استفاده از روش شبکه عصبی‌ مصنوعی(مطالعه موردی مترو تبریز)

امروزه ماشین‎های تونل‎بری TBM‎ (Tunnel Boring Machine) بطور وسیعی در حفر تونل‎ها بخصوص تونل‎های شهری استفاده می‎شوند. این ماشین‎ها بر اساس روش نگهداری سینه‌کار و دیواره‌های تونل، دارای انواع مختلفی می‌باشند. یکی از انواع این ماشین‌ها، سپرهای تعادلی فشار زمین EPB (Earth Pressure Balance) می‌باشد که جهت حفاری خط 1 متروی تبریز مورد استفاده قرار گرفته است. عوامل مختلفی نظیر شرایط زمین‎شناسی، خصوصیا...

full text

تخمین ضریب بهره وری ماشین حفر تونل(TBM) با استفاده از شبکه عصبی مصنوعی

پیش بینی سرعت پیشروی ماشین های حفر تونل ،به منظور تعیین برنامه زمانی و برآورد هزینه های اجرایی در پروژه های تونل سازی با حفر مکانیزه،از اهمیت زیادی برخوردار است.برای این منظور لازم است تا ضریب بهره وری ماشین حفر تونل مشخص شده تا بر اساس آن سرعت پیشروی ماشین تعیین شود.اگر چه روابط تجربی متعددی د راین زمینه ارائه شده اند ولی این روابط از دقت بالایی برخوردار نیستند.هدف از انجام این مطالعه تعیین ضر...

full text

تخمین ضریب بهره وری ماشین حفر تونل(tbm) با استفاده از شبکه عصبی مصنوعی

پیش بینی سرعت پیشروی ماشین های حفر تونل ،به منظور تعیین برنامه زمانی و برآورد هزینه های اجرایی در پروژه های تونل سازی با حفر مکانیزه،از اهمیت زیادی برخوردار است.برای این منظور لازم است تا ضریب بهره وری ماشین حفر تونل مشخص شده تا بر اساس آن سرعت پیشروی ماشین تعیین شود.اگر چه روابط تجربی متعددی د راین زمینه ارائه شده اند ولی این روابط از دقت بالایی برخوردار نیستند.هدف از انجام این مطالعه تعیین ضر...

full text

پیش بینی نرخ نفوذ ماشین های تونل بری با استفاده از شبکه عصبی

در این مقاله ابتدا برخی از روش های پیش بینی نرخ نفوذ tbm مرور شده و سپس نرخ نفوذ با منظور کردن پارامترهای نوع سنگ، درصد کوارتز، مقاومت فشاری تک محوره، قطر دیسک، نیروی نفوذ هر دیسک و rqd با استفاده از شبکه عصبی پیش بینی شده است. با حذف rqd و درصد کوارتز از پارامترهای ورودی، حساسیت شبکه نسبت به حذف این پارامترها مورد بررسی قرار گرفته است. مقایسة نتایج شبکه عصبی با مدل تجربی گراهام، توانایی شبکه ع...

full text

My Resources

Save resource for easier access later


Journal title:
مهندسی تونل و فضاهای زیرزمینی

Publisher: دانشگاه صنعتی شاهرود و انجمن تونل ایران

ISSN 2322-3111

volume 1

issue 1 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023